-->

Trigonometry

1st Quadrant Measures of common angles:

    


Also, be able to draw accurate graphs of the sine and cosine functions
Conversions from other quadrants to 1st quadrant:
Q2 to Q1:  p - q;        Q3 to Q1:  q - p;        Q4 to Q1:  2p - q.  (q in radians)
If you forget these, draw a circle and use symmetry and common sense.

Signs in other quadrants:



A mnemonic:  "All Students Take Calculus".  A = all are + in Q1; S = sine is + in Q2; T = tangent is + in Q3; C = cosine is + in Q4.

Inverse trig functions: 
y = sin-1 x:    y will be in Q1 or Q4, use symmetry to get other answers.
y = cos-1 x:   y will be in Q1 or Q2, use symmetry to get other answers.
y = tan-1 x:   y will be in Q1 or Q4, use symmetry to get other answers.


   Fundamental Identities
cos2 q  + sin2 q  = 1
1 + tan2 q  = sec2 q
1 + cot2 q  = csc2 q
             sin q  = − sin(−q)                                          cosc q  = − csc(−q)
cos q  = cos(−q)                                             sec q  = sec(−q)
            tan q  = − tan(−q)                                         cot q  = − cot(−q)

    Addition formulas
sin(a + b) = sin a cos b  + cos a sin b
sin(ab) = sin a cos b  − cos a sin b
cos(a + b) = cos a cos b  − sin a sin b
cos(ab) = cos a cos b  + sin a sin b


   Double-angle formulas
sin 2a  = 2 sin a cos a
            cos 2a  = cos2 a  − sin2 a   =   2 cos2 a  − 1   =   1 − 2sin2 a


   Half-angle formulas
            sin2 a  = (1 − cos 2a )/2
            cos2 a  = (1 + cos 2a )/2

No comments:

Post a Comment